Cocycle Deformations of Algebraic Identities and R-matrices
نویسندگان
چکیده
For an arbitrary identity L = R between compositions of maps L and R on tensors of vector spaces V , a general construction of a 2-cocycle condition is given. These 2-cocycles correspond to those obtained in deformation theories of algebras. The construction is applied to a canceling pairings and copairings, with explicit examples with calculations. Relations to the Kauffman bracket and knot invariants are discussed.
منابع مشابه
Cocycle Deformations for Hopf Algebras with a Coalgebra Projection
In this paper we study Hopf algebras with a coalgebra projection A ∼= R#ξH and their deformations by an H-bilinear cocycle. If γ is a cocycle for A, then γ can be restricted to a cocycle γR for R, and A γ ∼= RR#ξγH. As examples, we consider liftings of B(V )#K[Γ] where Γ is a finite abelian group, V is a quantum plane and B(V ) is its Nichols algebra, and explicitly construct the cocycle which ...
متن کاملStiffness Matrices for Axial and Bending Deformations of Non-Prismatic Beams with Linearly Varying Thickness
Siffness matrices for axial and bending deformations of a beam having a rectangular cross sectional area of constant width and linearly varying thickness are developed. A consistant load vector for a uniformly distributed lateral load is also calculated, using the principal of potential energy. The matrices are used to obtain numerical results for a variety of beams with non-uniform thickness t...
متن کامل2 00 2 QUANTIZATION OF NON - UNITARY GEOMETRIC CLASSICAL r - MATRICES
In this paper we explicitly attach to a geometric classical r-matrix r (not necessarily unitary), a geometric (i.e., set-theoretical) quantum R-matrix R, which is a quantization of r. To accomplish this, we use the language of bijective cocycle 7-tuples, developed by A. Soloviev in the study of set-theoretical quantum R-matrices. Namely, we define a classical version of bijective cocycle 7-tupl...
متن کاملDeformations of Vector Fields and Hamiltonian Vector Fields on the Plane
For the Lie algebras L\(H(2)) and L\(W(2)), we study their infinitesimal deformations and the corresponding global ones. We show that, as in the case of L\{W(\)), each integrable infinitesimal deformation of L\(H(2)) and L1(W/(2)) can be represented by a 2-cocycle that defines a global deformation by means of a trivial extension. We also illustrate that all deformations of L\{H{2)) arise as res...
متن کاملThe Algebraic Hull of the Kontsevich–zorich Cocycle
We compute the algebraic hull of the Kontsevich– Zorich cocycle over any GL2 (R) invariant subvariety of the Hodge bundle, and derive from this finiteness results on such subvarieties.
متن کامل